科研星球

Nature | 甲醛危害健康的分子机制

0 (2).png

图1 内源性甲醛造成DNA损伤【1】


甲醛高度活跃,是造成内源DNA损伤的来源,需要机体DNA链进行内源交联修复【1,2】。在DNA损伤后,机体内会降解RNA聚合酶II并关闭整体转录。但是这一响应过程在人类疾病科凯恩氏综合征(Cockayne syndrome)中是缺乏的。科凯恩氏综合征是早衰症的一种,病人生长迟滞、衰老迅速,成因主要是CSA(Cockayne syndrome A)或者CSB蛋白的缺失【3】


2021年11月24日,英国牛津大学Ketan J. Patel研究组在Nature上发表文章Aldehyde-driven transcriptional stress triggers an anorexic DNA damage response以科凯恩氏综合征为着手点,揭开了内源甲醛通过造成转录胁迫引发DNA损伤响应的具体分子机制。


0.png


DNA损伤后会导致转录机器RNA Pol II的停滞,这种停滞的现象会起始DNA模板的损伤修复(Nucleotide excision repair,NER)。NER过程有两个分支,一个是全基因组NER(Global genome NER,GG-NER),会通过感应全基因组上DNA双螺旋的畸变而对DNA损伤进行修复;另外一种是转录偶联的核苷酸损伤修复(Transcription-coupled nucleotide excision repair,TC-NER),对转录过程中的DNA进行损伤修复【4】


为了对甲醛造成机体损害的具体机理进行解析,作者们首先想知道甲醛造成的DNA损伤修复是哪一种。为此,作者们分别构建了缺乏GG-NER、TC-NER以及同时缺乏GG-NER和TC-NER的转化小鼠胚胎成纤维细胞系模型,并且与甲醛解毒酶(Formaldehyde-detoxifying enzyme)ADH5缺乏进行组合。作者们发现与GG-NER缺失的小鼠相比,另外两种小鼠细胞系对甲醛的处理是非常敏感的,同时缺乏ADH5会进一步加重对甲醛处理的敏感性。在遭遇DNA损伤后,活跃转录的RNA Pol II会出现停滞,RNA Pol II最大亚基RPB1会被快速泛素化然后进行降解,而后未处于转录状态的RNA Pol II会进入转录活跃状态开始转录。通过在HEK 293细胞中进行检测,作者们发现甲醛刺激也会产生相似的响应。在ADH5以及CSB单独敲除或者双敲除的细胞系中的,也会出现明显的甲醛诱导的RNA Pol II降解,且双敲除细胞品系会对甲醛处理的响应更加敏感。因此,该结果说明细胞内的解毒作用以及CSB会保护细胞免受甲醛的毒性,甲醛暴露会导致转录阻碍的DNA损伤从而引发RNA Pol II多聚泛素化修饰和降解。


进一步地,为了对甲醛造成内源DNA损伤以及NER修复的充分性进行检测,作者们构建了不同NER的小鼠的缺乏模型。与先前的结果相一致的是,缺乏NER且同时缺乏甲醛解毒酶ADH5的小鼠会出现机体健康状况渐进性下降、肾脏功能障碍并最终死于肾衰竭。甲醛DNA加合物N2-Me-dG是生物体内甲醛暴露生物标记物,在ADH5缺乏或者CSB同时缺乏的雄性小鼠中水平更高,说明甲醛对小鼠的影响还具有明显的性别二态性。而且不管是内源还是外源的甲醛累积都足以造成小鼠出现类似于人类科凯恩氏综合征的特征。


那么解毒酶缺失且CSB缺乏的小鼠中肾脏衰竭的原因是什么呢?单细胞RNA-seq为疾病中不同细胞种类变化的鉴定提供技术支持。为此,作者们的采用scRNA-seq对小鼠响应甲醛的细胞图谱进行鉴定,发现肾小管上皮细胞(Proximal tubule cells)的转录谱在科凯恩氏综合征小鼠模型中受到的影响是最大的。进一步,作者们对科凯恩氏综合征小鼠模型肾小管上皮细胞的状态和功能的进行确认,发现受损伤的肾小管上皮细胞中会表达GDF15以及p21,这些基因都受到p53的调节。Gdf15基因编码TGF-β超家族的蛋白,是著名的食欲抑制因子。GDF15介导DNA损伤引发的恶液质(Cachexia),恶液质和严重的生长迟缓也是人类凯恩氏综合征的重要特征。作者们发现肾脏正是GDF15分泌的关键器官。因此,科凯恩氏综合征小鼠模型中会出现生长迟滞、体重减少以及血液中GDF15的表达。


总的来说,该工作建立了科凯恩氏综合征小鼠模型,并找到了甲醛导致机体损害以及引发肾脏衰竭的具体分子机制。另外,Cisplatin是化疗药物,也会造成p53依赖的GDF15的分泌,刺激恶液质体重降低。因此,本研究中发现的GDF15以及其受体的作用轴可以作为缓解化疗药物胃肠反应和肝肾毒性的药物开发靶标。


0 (1).png



原文链接:
https://doi.org/10.1038/s41586-021-04133-7

来源:bioart


参考文献


1 Pontel, L. B. et al. Endogenous Formaldehyde Is a Hematopoietic Stem Cell Genotoxin and Metabolic Carcinogen. Molecular cell 60, 177-188, doi:10.1016/j.molcel.2015.08.020 (2015).
2 Cheng, G. et al. Reactions of formaldehyde plus acetaldehyde with deoxyguanosine and DNA: formation of cyclic deoxyguanosine adducts and formaldehyde cross-links. Chemical research in toxicology 16, 145-152, doi:10.1021/tx025614r (2003).
3 Laugel, V. Cockayne syndrome: the expanding clinical and mutational spectrum. Mechanisms of ageing and development 134, 161-170, doi:10.1016/j.mad.2013.02.006 (2013).
4 Marteijn, J. A., Lans, H., Vermeulen, W. & Hoeijmakers, J. H. Understanding nucleotide excision repair and its roles in cancer and ageing. Nature reviews. Molecular cell biology 15, 465-481, doi:10.1038/nrm3822 (2014).


没有账号?